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Abstract

Little is known about how firms learn to use new technologies. Using novel data on inputs, profits,

and information sets, I study how oil companies learned to use hydraulic fracturing technology in North

Dakota between 2005-2012. Firms only partially learned to make profitable input choices, capturing just

60% of possible profits in 2012. To understand why, I estimate a model of input use under technology

uncertainty. Firms chose fracking inputs with higher expectations but lower uncertainty about profits,

consistent with passive learning but not active experimentation. Most firms over-weighed their own

information. These results provide evidence of impediments to learning.

1 Introduction

New technologies are important contributors to economic growth1, but little is known about how

firms learn to profitably use them. While there is longstanding evidence that firms learn from

their own experiences (learning-by-doing), and from others (social learning), the specific actions

that firms actually take in learning are not well understood. Theoretical models of learning pre-

dict that rational agents (such as firms) e�ciently analyze information about new technologies,

invest in experiments to create new information, and incorporate information generated by oth-

ers.2 However, to test these models, it is necessary to measure the information that firms have,

which is challenging in many empirical settings. This paper tests predictions of learning models

for the first time, using data on oil companies that employ hydraulic fracturing (fracking) in the

North Dakota Bakken Shale. The data covers input choices, profits, and direct measures of the

information firms had when making those choices. The oil companies in this data learn to use
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fracking more profitably over time, but are slow to respond to new information, avoid experiments

and underutilize data provided by their competitors.

Fracking is a useful context to study learning behavior in firms for several reasons. First, the

profit maximizing choice of fracking inputs may vary across drilling locations in unpredictable

ways, so firms must empirically learn the relationship between inputs and outputs over time and

adjust their behavior as they learn. Thus, there is a well defined learning problem that many

firms simultaneously face. Second, in North Dakota, firms can learn about fracking from a wealth

of publicly available information. Regulators collect and publicly disseminate unusually detailed,

well-specific information about oil production and fracking input choices. This information is

not disseminated until 6 months after a well is fracked, making it possible to precisely measure

di↵erences in knowledge about fracking across firms. Third, the industry is not concentrated,

which motivates studying learning as a single agent problem. During the time period I study,

there are 82 active firms, the market share of the largest firm is only 11% and the combined share

of the five largest firms is under 50%. Fourth, the two main inputs to fracking, sand and water, are

commodities, as is the output of fracking, crude oil. The unique regulation and industry structure

make fracking in the Bakken shale an unusually compelling setting for studying learning in firms.

Finally, the stakes in fracking are large. Using a production function, I estimate that the average

NPV of profits per well for actual fracking choices is about $8 million, while the average profit for

each well’s most profitable choice is $16 million. Since the regulator in North Dakota expects that

40,000 wells will eventually be fracked over the next 20 years, the potential for lost profits from

ine�cient learning is substantial.3

Learning-by-doing and social learning are both important in this context. In 2005 and 2006,

the average well is fracked by a firm that had fracked only a single well before. By 2012, the

average well is fracked by a firm that had previously fracked 171 wells. Thus, firms can learn from

an increasing amount of their own experience. However, North Dakota’s disclosure laws make it

possible for firms to study their competitors’ data in addition to their own. Between 2005 and

2006, the average well is fracked by a firm that can observe 9 wells previously fracked by other

firms, a number which rises to 2,786 in 2012. As a result, most of the information firms have comes

from others, and firms have the ability to socially learn.

The data I collect from the regulator in North Dakota is well suited to estimate the relationship

between location, fracking, and oil production. I observe the complete operating history of every

firm and every well they frack in the Bakken Shale between January 2005 and December 2012

(82 firms and 4,408 wells), so there is no possibility for survivorship bias. The data contains

precise measurements of a well’s production, location and most important fracking inputs, which

limits the likelihood of endogenous omitted variables. Moreover, the engineering requirements for

wells drilled into the Bakken prevent firms from selecting observed fracking inputs on the basis

of information I do not observe. Thus, the standard endogeneity problem in production function

estimation is unlikely to be a concern.

Using the data I collect, I semi-parametrically estimate a production function for fracking which

3See https://www.dmr.nd.gov/oilgas/presentations/NDOGCPC091013.pdf
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represents what firms need to learn. These estimates show that amount of oil in the ground and

the sensitivity of its production to fracking both vary over space, a result that is consistent with

geological theory and data. Estimates made using subsets of the data that were available to firms

when they were fracking have qualitatively similar results, suggesting that firms could have used

this data to make informed fracking decisions. The estimated production function fits the data

well and is stable across robustness tests.

Existing research measures learning from experience-driven upward trends in productivity, or

residual production that is not explained by input choices. I measure the extent to which these

firms learn to be more productive by estimating the correlation between the production function

residuals with direct measures of their experience. Surprisingly, there are no systematic correlations

between the production function residuals and measures of experience. If anything, firms with more

experience are empirically less productive, but the di↵erences are small.

In contrast, firms do learn to make more profitable input choices. Wells fracked in early years

capture only 20% of the profits that optimally fracked wells would have produced. However, profit

capture grows almost monotonically over time, with firms capturing 61% of maximal profits in

2012. This growth is driven by improved fracking input choices, with firms gradually increasing

their use of sand and water towards optimal levels over time. I interpret this upward trend in the

profitability of fracking input choices as evidence for learning.

To see if firms are using their information to make better fracking choices over time, I estimate

ex ante production functions for each well, using the subset of the data that firms had when they

were making choices. I use these estimates to compute ex ante profits. Though firms capture 80%

of ex ante optimal profits in 2005, they capture only 60% in 2012. The fraction of ex ante profits

falls because initial fracking input choices are close to the (then) estimated optimal levels, but

optimal levels subsequently change more quickly than choices do.

Theory predicts that firms may sacrifice estimated profits in the current period by experi-

menting in order to generate information for the future. To test if experimenting behavior can

rationalize the decline in the fraction of estimated ex ante optimal profits captured, I estimate

a simple model of fracking input choice under technology uncertainty. In this model, firms have

preferences over the expectation and standard deviation of their ex ante estimates of profits for a

fracking input choice. If firms are experimenting, they should be empirically more likely to choose

inputs with higher standard deviations of profit. I do not find support for this theory. The firms in

this data are more likely to select fracking designs with higher expected profits and lower standard

deviation of profits. Their choices indicate that they are indi↵erent between a $0.34-$0.63 increase

in expectation of profits and a $1 reduction in the standard deviation of profits.

My calculation of the expectation and standard deviation of profits assumes that firms equally

learn from their own and others’ experiences. However, firms may treat the social portion of their

data di↵erently than the data they directly experience, and in the process form di↵erent estimates

of profits than what I calculate. To account for this possibility, I estimate the weight that firms

place on their own experience, relative to their competitors’ experiences. Most firms place more

weight on their own experiences than their competitors’ experiences. Even after allowing firms
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to learn di↵erently from their own data than their competitors’, firms still prefer fracking choices

with lower standard deviations and higher means.

This paper finds that firms are reluctant to experiment and ignore valuable data generated by

their competitors. These firms are not unsophisticated or under-incentivized. They have access to

capital markets, are managed by executives with engineering and business education and are the

primary equity holders in the wells they frack. These findings stand in contrast to some theories

of e�cient learning behavior by rational agents, which predict that firms will take experimental

risk and learn from all the information they have.

In addition to its usefulness as a laboratory to study learning, fracking plays a prominent role in

current public policy debates about growing oil production and its e↵ects on the environment. The

US EIA reports that fracking has caused national oil production to grow 22% since 2009, reversing

almost two decades of declines.4 There is early evidence that fracking-driven resource booms

have a↵ected housing prices5 and local banking markets.6 However, there are growing concerns

about the potential for fracking to negatively a↵ect the quantity and quality of local ground

water supplies,7 which the US EPA is currently studying.8 In response to these concerns, federal

regulators have proposed significant increases to disclosure requirements for fracking operations.9

Though this push for increased transparency around fracking is driven by environmental concerns,

new disclosure regulations may also have an impact on learning by increasing the availability of

data.

Finally, the Bakken Shale is unlikely to be the last oil and gas formation where fracking and

the learning it requires play an important role. Fracking is currently in use in the Eagle Ford

and Barnett Shales in Texas, the Woodford Shale in Oklahoma, and several locations in Canada.

International oil companies are now developing shale resources in Argentina, Poland and China.

The results of this paper may be useful to both policy makers and oil & gas companies alike in

regulating access to information and understanding the benefits of more e�cient learning behavior.

1.1 Related literature

Firms in many industries and time periods have become more productive by learning from their

own experiences. Researchers studying the manufacturing of World War II ships (Thornton and

Thompson 2001), aircraft (Benkard 2000) and automobiles (Levitt et al. 2012) have documented

an important empirical regularity: with the same inputs, firms are able to produce more output

as they accumulate experience in production.10 That is, they learn by doing (LBD). The LBD

result that productivity is correlated with experience suggests that the knowledge embedded in

this experience is a direct input to the production function. Changes over time in capital, labor

4http://www.eia.gov/todayinenergy/detail.cfm?id=13251
5Muehlenbachs et al. (2012) find that housing prices increase after the introduction of fracking to a community, except

for houses that depend on groundwater.
6See Gilje (2012)
7See Vidic et al. (2013) for an overview
8See http://www2.epa.gov/hfstudy
9See Deutsch (2011).

10This phenomenon has also been observed by Anand and Khanna (2000) in the corporate strategy setting.
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and materials are thus interpreted as profit-maximizing responses to increases in productivity, not

changes in specific knowledge. In this paper, I instead assume that the production technology itself

is initially unknown and that experience has no direct impact on production. As firms accumulate

experience in fracking, they acquire more data about the fracking production function, perform

inference on this data, and make more profitable input choices on the basis of their inference. This

is similar to the approach taken by Foster and Rosenzweig (1995) and Conley and Udry (2010) in

the development literature.

Economic theory predicts that when firms are learning about a new technology, they face a

tradeo↵ between “exploration” and “exploitation” (or experimentation). Firms may actively learn

by experimenting with fracking input choices that have highly uncertain profits or passively learn

by exploiting choices with high expected profits. Except in the simplest theory models, the op-

timal amount of experimentation and exploitation is a challenging problem to solve. However,

most models of learning predict that forward-looking firms will always do some experimenting. In

the single agent context, Aghion et al. (1991) show that forward-looking firms will almost always

do some exploration. Bolton and Harris (1999) find a similar result in the multi-agent context.

Wieland (2000) employs computational methods to characterize the costs and benefits of explo-

ration, finding that firms who only exploit can get stuck, and repeatedly choose suboptimal actions.

To my knowledge, this paper is the first to empirically measure the amount of experimenting that

firms perform in a learning situation.

This paper adds to a wide literature documenting the existence and importance of social learn-

ing between firms. Much of this evidence is in agricultural settings. Ryan and Gross (1943),

Griliches (1957) and Foster and Rosenzweig (1995) demonstrate that farmers learn about the ben-

efits of adopting new technologies from the experiences of their neighbors. Conley and Udry (2010)

show that farmers in Ghana learn about the e�cient use of fertilizer from other farmers in their

social networks, demonstrating that social learning in agriculture is not limited to the adoption de-

cision. Social learning has also been observed in manufacturing. During the construction of WWII

ships, Thornton and Thompson (2001) find that firms benefited from accumulated experience by

other firms. Similarly, Stoyanov and Zubanov (2012) find evidence that firms in Denmark became

more productive after hiring workers away from their more productive competitors.

Finally, this paper is complementary to the existing literature on learning behavior by oil and

gas companies. Levitt (2011) shows that the observed temporal and spatial patterns of the oil

exploration process match the predictions of a forward-looking learning model. In a study of

o↵shore drilling, Corts and Singh (2004) show that as oil companies gain experience with their

service contractors, they learn to trust them and tend to select low-powered contracting terms.

Kellogg (2011) studies this phenomenon in the on-shore setting and shows that oil companies and

their service contractors jointly learn to be more productive in drilling as they accumulate shared

operating experience.

The remainder of the paper is as follows. In Section 2, I provide institutional background on

fracking in North Dakota and describe the data I have on operational choices, production results

and information sets. Next, in Section 3, I estimate a production function model of fracking and
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evaluate its ability to predict oil production. In Section 4, I use the production function estimates

to test if firms learned to make more profitable fracking choices over time. In Section 5, I specify

and estimate the model of fracking input choice under technology uncertainty. Finally, I conclude

in Section 6.

2 Institutional Background and Data

2.1 Fracking and US Oil Production

The hydraulic fracturing of shale formations, like the Bakken, has had a profound impact on the

fortunes of energy producing states and the US as a whole. In 2009, the US Energy Information

Administration reported that national oil production grew 6.8% year-over-year, the first increase in

over two decades.11 This trend has continued and between 2009 and 2012, national oil production

increased 21.7%. Three states represent the majority of this growth: Texas, Oklahoma and North

Dakota. This paper focuses on what has happened in North Dakota.

In March 2012, North Dakota surpassed Alaska to become the second most prolific oil producing

state in the US, after Texas. Between January 2005 and July 2013, oil production in North Dakota

increased from 93,000 barrels (bbl) per day to 874,000 bbl per day. During the same time period,

total US oil production increased from 5.63 million bbl per day to 7.48 million bbl per day, meaning

that increased production in North Dakota amounted to 42% of the net increase in total production.

Though production increased in Texas and Oklahoma as well, it is striking that North Dakota went

from producing less than 2% of national oil production to almost 12% in the span of 8 years.12

This vast expansion in North Dakotan oil production coincided with the introduction of fracking

to the Bakken Shale formation.

2.2 The Bakken Shale and Hydraulic Fracturing

The Bakken Shale spans 200,000 square miles in North Dakota, Montana and Saskatchewan.13 It

lies 10,000 feet underground and contains 3 distinct layers: the upper Bakken member (a shale

layer), the middle Bakken member (a layer of sandstone and dolomite), and the lower Bakken

member (also a shale layer). The US Geological Survey estimates that the upper and lower shales

together contain 4.6 billion bbl of recoverable oil.14 Though the middle Bakken member is not

formed from organic material and as such does not generate any oil of its own, firms typically drill

horizontally through it and use hydraulic fracturing, or “fracking”, to make contact with the oil

bearing shales above and below, as shown in Figure 1.

11See the EIA Annual Energy Review, 2009. http://www.eia.gov/totalenergy/data/annual/archive/038409.pdf
12Texas also experienced production significant production increases during that same time period, though from a much

higher base level (from 1.08 million bbl per day to 2.62 million bbl per day, a 143% increase). Much of this increase can
also be attributed to the technology changes described here. Operators applied fracking technology successfully to the Eagle
Ford, Permian and Barnett shales.

13See Gaswirth (2013)
14See Gaswirth (2013)
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Fracking is the process of pumping a mix of water, sand and chemicals into a well at high

pressures. The high pressure of the mix fractures the surrounding rock and the sand in the mix

props those fractures open.15 The fractures created by fracking the middle Bakken radiate outwards

into the upper and lower Bakken shales, as shown in Figure 1. These fractures both serve as a

conduit between the wellbore in the middle Bakken and the upper and lower shales, and also

increase the permeability of the upper and lower shales.

Permeability is a geological measure of the ease at which oil naturally flows through rock. The

upper and lower shales are unusually impermeable, making it impossible for the oil they contain

to naturally reach a wellbore drilled through the middle member. Without fracking, wells drilled

into the middle member will not produce profitable quantities of oil.16 After fracking, oil inside

the lower and upper shales can more easily travel through the new fractures into the wellbore in

the middle member.

Firms choose how much water and sand to use in fracking and this choice can have a large

impact on the profitability of a well. Wells fracked with more sand and water may produce more

oil than wells fracked with less, but fracking is expensive, and water and sand represent the bulk of

this expense. In 2013, the reported costs of fracking range from $2-5 million per well, out of total

well costs of $9 million.17 Thus, to maximize profits, firms must balance the benefits of sand and

water use in fracking with their costs. This requires firms to understand the relationship between

oil production and fracking inputs, and it is unlikely that firms initially knew this relationship.

The first Bakken wells to be developed with fracking were not drilled until 2005, and at the time,

the firms developing those wells had limited experience in fracking shale formations.18 Without

prior experience, firms had to learn how to use fracking by doing it themselves or by studying their

competitors.

There is now a growing literature about best practices in fracking. Petroleum engineers have

found that wells fracked with more water and sand are often more productive than similar wells

with less aggressive fracking treatments.19 However, there is also evidence that the relationship

between oil production and fracking inputs is not necessarily monotonic and that it varies over

drilling locations.20 Because the research documenting these results was not publicly available to

firms during the time period I study, it is possible that they did not know these facts initially.

15Chemicals reduce mineral scaling, inhibit bacterial growth, reduce wear and tear on fracking hardware and increase the
buoyancy of sand in the fracking mixture. See http://www.fracfocus.org for an overview.

16See Hicks (2012)
17See Hicks (2012)
18Fracking was first successfully used in shale formations in the 1990s. Under the hunch that permeability issues could

eventually be resolved through the use of fracking, Mitchell Energy worked for years on its own and with the help of the US
Department of Energy to learn how to apply fracking technology to the Barnett shale in Texas. They succeeded in 1997. See
Michael Shellenberger and Jenkins (2012). Two firms active in North Dakota, EOG and XTO, were active in the Barnett
as well. However, the Barnett Shale is di↵erent from the Bakken. Barnett wells are drilled directly into the shale layer, and
produce natural gas instead of oil. It is unlikely that any knowledge that these firms may have had about fracking in the
Barnett was useful in the Bakken.

19See Shelley et al. (2012)
20See Baihly et al. (2012)
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2.3 The Information Environment in North Dakota

Firms in North Dakota can learn about the relationship between oil production, location, and

fracking inputs from the past experiences of other firms. After a firm fracks a well, the oil and

gas regulator in North Dakota requires the firm to submit a well completion report, detailing

the well’s horizontal length, location and fracking inputs. Additionally, the regulator and tax

authorities require the firm to submit audited production records on a monthly basis. The regulator

publishes this information on the internet, making it easy for firms to learn information about every

previously fracked well in the state, including information about wells that they took no part in

developing.

North Dakota’s well confidentiality laws generate a 6 month delay between when firms submit

well completion reports and when the regulator makes them public. This delay creates di↵erences

across firms in what wells they can learn from at each point in time, as the operating firm of a

well has a temporary knowledge advantage over other firms. However, the ownership structure of

mineral rights in a well mitigates some of these di↵erences.

Mineral rights for a well are often owned by many separate firms. Every firm that owns mineral

rights in the area spanned by a well is entitled to pay a share of the capital expenditures needed

to develop the well in exchange for a share of the revenue generated by the well. The firm with

the largest mineral rights claim in a well is called the “operator”, and it retains all control rights,

including the choice of the well’s fracking inputs. The remaining owners of mineral rights are called

“non-operating participants”. Figure 2 depicts a hypothetical ownership situation for a well in the

Bakken. The land spanned by the well is a 2 mile by 1 mile rectangle, called a “spacing unit”.

Within this spacing unit, Firm A has the largest mineral rights claim, followed by firms B and

C. The wellhead enters the ground in A’s claim and the horizontal segment passes through B’s

claim. Though the well does not directly pass through C’s claim, it is close enough to C’s claim

that it may be drawing oil from the claim. While A retains control rights, B and C must pay their

respective share of capital expenditures.21

Non-operating participants have immediate access to a well’s completion report.22 This means

that non-operating participants in a well are not subject to well confidentiality rules and thus

observe information regarding a well before the public does.

2.4 Data

2.4.1 Well Characteristics and Production History

I have collected operating and production data for every well targeting the Bakken Shale formation

in North Dakota that was fracked between January 1, 2005 and December 31, 2012. This data

is reported by oil companies to the North Dakota Industrial Commission (NDIC), and the NDIC

publishes their submissions on the internet. For each well i, I observe the location of its wellhead

21Firms can choose to opt out of a spacing unit, but that does not allow them to operate another well within the spacing
unit, so opt outs are rare.

22See Larsen (2011)
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in latitude lat
i

and longitude lon
i

coordinates, its horizontal length H
i

, the mass of sand S
i

and

volume of water W
i

per foot of horizontal length used in fracking and the identity of the operating

firm. Additionally, I observe oil production Y
it

for well i in it’s t-th month of existence and the

number of days D
it

during that month that the well was actually producing. Let X
it

denote the

set (H
i

, D
it

) and let Z
i

denote the set (S
i

,W
i

, lat
i

, lon
i

). Then the dataset (Y
it

, X
it

, Z
i

) has a panel

structure, where i indexes wells and t indexes well-specific timing. Though I only study wells

fracked during 2005-2012, I have production data through November 2014, making it possible to

study the performance of all wells for at least two years. While the production history is reported

electronically on the NDIC website, the static well characteristics are stored in PDF format, so

much of this dataset was entered into the computer manually. I also observe the “township” ⌧
i

that

the wellhead lies in. Townships are 6 mile by 6 mile squares, defined by the US Geological Survey

and are a standard measure of location in the oil & gas business. There are 308 townships in North

Dakota with Bakken wells during 2005-2012. I have also collected the geographic boundaries of

the spacing units for every well. This data comes from various portions of the NDIC website.

Though most of the data I collect from the NDIC is self reported by firms, there are two reasons

why it is likely to be truthfully reported. First, oil and gas regulations in North Dakota specify

explicit penalties for failure to report required information and false reporting, including fines of

up to $12,500 per day per o↵ense and felony prosecution.23 Second, because operators wish to

collect payment for capital expenditures from their non-operating partners, they must share the

documentation and billing they receive from their service contractors. If operators were to report

data to the NDIC that was at odds with what they had shared with their non-operating partners,

they might jeopardize their ability to collect payment.

In addition to the well characteristics, I also collect geological characteristics of the rock into

which each well is drilled. The data comes from the North Dakota Geological Survey maps and

GIS shape files published in 2008, and provides estimates of the thickness of the upper and lower

Bakken shales, their total organic content, and their thermal maturity.24 These three factors

describe the quantity of rock in the formation, the fraction of the rock that can generate oil, and

the likelihood that oil generation has occurred, respectively. For each well, I compute thickness as

the sum of the estimated thicknesses for the upper and lower Bakken shales, total organic content

as the thickness-weighted average of the estimated total organic content of the upper and lower

Bakken shales, and thermal maturity as a composite index of two thermal maturity measures

reported in the maps.25

23See Section 38-08-16 in the NDIC Rulebook.
24Specifically, the data come from NDGS maps GI-59 and GI-63.
25Organic material is converted into petroleum following long term exposure to high temperatures. The extent of this

exposure is called thermal maturity, and geologists use three categories to describe the thermal maturity of a rock sample.
Thermally immature rock has less exposure than is necessary for the conversion of organic material into oil. Thermally
mature rock has enough exposure for the conversion of its organic content into oil. Thermally over-mature rock has too much
exposure, and its organic content is converted into natural gas. The NDGS provides two measures of the thermal maturity
of the Bakken: hydrogen index and S2-TMAX. Both measures are collected by heating a rock sample to high temperatures
and measuring the rate of oil expulsion across temperatures. The maximum rate at which oil is expelled, divided by organic
content, gives the hydrogen index. Since hydrogen is one of the two elements contained in all hydrocarbons, more hydrogen
indicates higher hydrocarbon generating potential. Potential oil production is higher for larger values of the hydrogen index,
with thermally mature rock at values as low as 200. The temperature of the highest rate of oil expulsion, called S2-TMAX,
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The NDGS developed these maps by analyzing and spatially interpolating data that operators

are legally required to submit to the NDIC. This data includes “cuttings”, which are the returned

rock samples generated during the drilling process, “cores”, which are contiguous sections of un-

drilled rock, and “well logs”, which show the underground measurements taken during drilling

and completion.26 The NDIC makes this data available to anyone27, so the information content in

these maps may have been known by firms before they were published in 2008.

Though these maps provide estimates of organic content, thickness, and maturity at a given

location, opportunities to measure the actual geological characteristics of the rock in a specific well

are infrequent. The most reliable way to do this is by drilling a core, which is slower and more

expensive than simply drilling a well. As a result, there are a limited number of wells that have

ever been cored, and of the 4,408 wells studied here, only 97 have been cored. The results of certain

geology tests can also reveal useful information about organic content and maturity, but according

to the NDGS, these tests were performed on only a third of the wells in this study. Moreover, its

not known whether these logs were analyzed before or after these wells were fracked.28 Though

cuttings could be informative about organic content and maturity, geologists have only began to

study their use in providing information about well quality.29 Even if these techniques had been

available (and in widespread use) between 2005-2012, they would only provide information about

the middle Bakken member, as that is the predominant source rock for cuttings. Thus, this geology

data represents only a proxy for the underlying quality of the rock into which a well is drilled.

Table 1 reports the cross-sectional distribution of well characteristics and oil production in

the first year.30 There is substantial variation across wells in both fracking input use and oil

production. The 75th percentiles of sand, water and oil production are approximately double their

respective 25th percentiles. This variation will be important later on in estimating the relationship

between oil production and fracking inputs. Most wells have horizontal segments that are 9,000

feet or longer. The length of a well’s horizontal segment is determined by the size of its spacing

unit. Though not shown in the table, approximately 75% of wells have rectangular spacing units

that are two miles wide and one mile tall. The remaining 25% have 1 mile square spacing units.

The average well produces 10 bbl per foot of horizontal length in its first year. Since the price of

oil averaged $76 per bbl during 2005-2012, the value of production in the first year for the average

is the other laboratory measure of thermal maturity. Thermally mature rock corresponds to S2-TMAX values between 435
and 460, with higher values in that range corresponding to higher oil production. Above 460 degrees celsius, oil production
is decreasing, and the rock is thermally over-mature. For more information, see McCarthy et al. (2011). I combine these
thermal maturity measures into a single thermal maturity score for each well, mature, defined as the thickness-weighted
average of the maturity scores for the lower and upper Bakken shales. The maturity score for either layer is 0.5 if the layer
is either mature by the hydrogen index standard or the S2-TMAX standard, 1 if it is mature by both standards, and 0 if its
mature by neither standard. Thus the combined score, mature ranges from 0 to 1.

26By North Dakota Century Code 38-08-04, Section 43-02-03-38.1, operators are required to send physical samples of
cuttings and cores, as well as the results of well logs and geology tests, to the NDGS within 90 days of collection, where they
can be publicly observed and analyzed by anyone.

27Subject to well confidentiality constraints
28For example, Pimmel and Claypool (2001) notes that “rock eval pyrolysis is not normally used to make real-time drilling

decisions because of the lengthy sample preparation, running, and interpretation time.”
29See, for example, Ortega et al. (2012)
30Because they are self reported and sometimes appear to contain typographical errors, I winsorize the lateral length, sand

use and water use variables at the 0.5% level
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well is worth $6.5 million. Most wells tend to produce on the majority of days during a month,

and though not shown in the table, only 93 wells have fewer than 20 average producing days.

The middle two panels of Table 1 show the distribution of past experience across wells. The

average well is fracked by a firm that has previously fracked 115 of its own wells, participated in

243 other wells, and can observe the data on 1,446 wells fracked by others. Among wells that are

within 1 township of the well a firm is about to frack, that firm can draw on its own experience for

27 wells, the experience of 25 wells it participated in, and and can observe an additional 33 wells

as a result of the public disclosure process.

The bottom panel of Table 1 reports the cross-sectional distribution of the geology covariates.

Most wells are drilled into rock that is high in organic content, and there is little variation in

organic content across wells. The average well is drilled into rock that is estimated to be 14%

organic, by mass, and 75% of wells are drilled into rock with TOC at or above 13%.31 As noted

in Section 2, thicker locations in the Bakken have the potential to contain more oil. Across all

wells, the combined thickness of the upper and lower Bakken shales averages 43.74 feet, with a

standard deviation of 13.5 feet. Finally, most wells have at least some rock that is considered

thermally mature. The average maturity score is 0.64, the median is 0.5, and the interquartile

range is (0.5,0.78). 58% of wells have a maturity score of 0.5.

Table 2 shows the distribution of well characteristics, oil production, and geology covariates

over time. The number of wells fracked and the number of active firms both increase in every

year. Nearly 38% of all wells in the sample are fracked during the last year, and in that year.

Over time, firms frack longer wells, using more sand and more water. Firms operating in 2012 use

nearly three times as much sand and five times as much water per foot of horizontal length, on

average, as firms in 2005. Although not shown in the table, there is also meaningful variation in

input use within townships during the same year.32 However, average oil production does not rise

monotonically. It peaks in 2008 and slowly falls in each subsequent year. Geology characteristics

are stable across years.

Oil production is correlated with sand and water use. Table 3 reports estimates of a regression

of oil production per foot of horizontal length onto township fixed e↵ects and dummy variables

for quintiles of sand and water use average oil production per foot by quintiles of sand and water

use. Across the first four quintiles of sand and all quintiles of water use, the highest input levels

are associated with higher oil production, a result that is consistent with the physical intuition

behind fracking. However, at high levels of sand use, the relationship between water use and oil

production appears to be non-monotonic, which is also consistent with the petroleum engineering

evidence in section 2.2.
31For comparison, the rock in Saudi Arabia’s Ghawar Field, the most prolific oil field in history, is only 5%. See Fox and

Ahlbrandt (2002).
32The within-township-year standard deviation of sand and water use are 76 lbs per foot and 86 gals per foot, respectively.
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2.4.2 Oil Prices

I collect the daily spot prices for West Texas Intermediate crude oil at the Cushing, Oklahoma oil

trading hub from the US Energy Information Administration, and daily spot prices for Bakken

crude oil at the Clearbrook, Minnesota hub from Bloomberg. The Cushing price is the reference

price for oil futures traded on the NYMEX commodity exchange, and the Cushing hub is con-

nected to North Dakota through the Keystone and Enbridge pipeline systems. However, given its

geographic proximity, the Clearbrook price may be a better representation of the price firms in this

data actually receive. Unfortunately, Bloomberg did not start recording Clearbrook prices until

October, 2010, so it is necessary to use Cushing prices before then. Between October 2010 and

December 2012, the Clearbrook price was $1.75 per bbl less than the Cushing price, on average.

Thus, I assume that between January 2005 and September 2010, firms received the Cushing price,

minus $1.75 per bbl, and after October 2010, they received the Clearbrook price. Figure 3 plots

the quarterly averages of these. Between 2005-2012, there was a boom and bust in oil prices, with

prices climbing from approximately $50 per bbl in early 2005, reaching more than $120 per bbl in

mid 2008 and falling to $45 per bbl in early 2009. In 2010-2012, when more than 78% of the wells

are fracked, oil prices average $89 per bbl.

2.5 Drilling and Fracking Costs

Though the NDIC does not require firms to report their costs, the legal process in North Dakota

occasionally makes this information public. In particular, when a non-operating mineral rights

owner decides not to participate in a well, the operator can ask the NDIC to impose a “risk

penalty”, which temporarily prevents the non-participant from earning revenue from its mineral

rights.33 In order to make this request, the operator must legally submit its estimate of the cost

of drilling and fracking the well, and this information is publicly recorded by the NDIC. Of the

4,408 wells in this dataset, the cost records for 199 are in the public domain for this reason.34

These wells span several years, so to make their costs comparable, I normalize them using a

cost index. There is no single publicly available cost index that is both specific to the Bakken

and available for all of 2005-2012, so I construct one by combining several other indices. Between

the first quarter of 2005 and the fourth quarter of 2007, the index grows at the rate of the BLS

Producer Price Index for oil & gas extraction. Between the the first quarter of 2008 and the fourth

quarter of 2009, the index grows at the rate of a cost index for vertical wells drilled in North

Dakota, published by Spears & Associates, a private consulting firm.35 Finally, starting in the first

33A non-participating mineral rights owner faced with a risk penalty forfeits a significant portion of its share of the well’s
revenue. In North Dakota, risk penalties are set to 200% of a non-participant’s share of capital expenditures. This means
that non-participants do not earn any revenue from a well in which they own mineral rights until the well has generated
200% of its capital expenditures in oil production.

34I was also able to find the cost information for an addition 22 wells by contacting the North Dakota Land Trust and by
conversations with a private investor in North Dakota.

35Spears & Associates surveys independent engineers in North Dakota quarterly, asking them to estimate the cost of a
reference well. The data is separately available for a vertical reference well design, which begins in the first quarter of 2008
and a horizontal reference well design, which begins in the first quarter of 2010. The vertical reference design does not include
a fracking treatment. The characteristics of the reference wells stay constant over time, so the changes in estimated costs
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quarter of 2010, the index grows at the rate of the Spears & Associates cost index for horizontal

wells drilled in North Dakota. I fix the cost index to 1 in the first quarter of 2005. Figure 4 plots

the cost index over time.

To estimate the individual components of costs, I assume that costs are the sum of five com-

ponents: the cost of the vertical portion of the wellbore w, the fixed cost of having any frack job

f , the variable costs of drilling the horizontal segment v, and the costs p
s

of pumping sand and p
w

of pumping water. That is:

total cost = w + f + v ⇥ L+ p
s

⇥ S + p
w

⇥W

The Spears & Associates data include estimates for the cost of the vertical wellbore, so I use that

data directly for w. To estimate the remaining cost terms, I subtract the cost of the vertical

wellbore from reported costs, divide the remainder by the cost index, and regress those values onto

a constant, the lateral length of the well, and the sand and water use for the well. The R-squared

of this regression is 0.27, and all coe�cients are positive and significantly di↵erent from zero at

the 5% level. I define the fixed cost of fracking as the constant, the variable cost of drilling as the

coe�cient on lateral length, and the sand and water costs as the coe�cients on sand and water

use. I generate time-specific costs by multiplying these estimates by the cost index. Finally, since

the fixed cost of fracking and the cost of the vertical wellbore are both “fixed”, I combine them

into a single fixed cost. Figure 5 plots these costs over time. Note that except for the fixed cost,

which changes as the cost of vertical drilling changes, the only source of time variation in costs

is driven by changes in the cost index. With these cost estimates, the average well in the sample

cost $7.2 million.

2.5.1 Information Sets

Firms can learn about fracking from three sets of wells. First, they can observe all wells that the

regulator has made public. This public knowledge includes wells that a given firm operated and

wells that other firms operated. Second, firms can observe their own wells which are not yet public

knowledge, due to well confidentiality. Third, firms can observe other firms’ wells in which they are

non-operating participants. I can compute the first two sets of information from well completion

reports alone. To compute the third set, I must identify the mineral rights owners in each well’s

spacing unit.

I collect mineral rights lease data from DrillingInfo.com, which digitally records the universe

of mineral rights transactions filed in county registries of deeds. These leases are often between a

surface owner and an intermediary lease broker operating on behalf of an oil company. Once the

broker acquires a lease, it assigns this lease back to its client, a transaction which is not recorded

by DrillingInfo.com. To capture the information in the lease assignment process, I also scrape the

website of the North Dakota Registry Information Network (www.ndrin.com), which electronically

are due to changes in prices, not quantities.
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records lease assignments.36 I combine this lease and lease assignment data into a single dataset

identifying the names of any firm that has mineral rights in a spacing unit.37 This dataset has

one or more leases for the stated operator of 93% of the wells, and has mineral rights owned by at

least one firm for 99% of the wells. I assume that all firms with mineral rights in a well’s spacing

unit that are not the well’s operator are non-operating participants.38

2.5.2 Outside Experience

Throughout the paper, I assume that the only relevant knowledge firms have about fracking comes

from the wells fracked in North Dakota during 2005-2012. To assess the validity of this assumption,

I collect firm-specific drilling history from IHS International for the 10 most active firms in my

data, which I report in Table 4. This data records the locations, both geographic and geologic,

well characteristics and timing of every well drilled by these firms in the United States. The data

does not indicate whether these wells had a fracture treatment. In the first column, I list the

number of wells each firm completed in the Bakken during 2005-2012. These 10 firms frack 64%

of the wells in the dataset. During the time period I study, 9 firms are public corporations, either

as independent entities (Brigham39, Continental Resources, EOG, Hess, Marathon and Whiting)

or as subsidiaries of larger oil companies (Burlington is owned by Conoco Phillips, XTO is owned

by Exxon Mobil). Petro-Hunt is privately held.

On the right hand side of Table 4, I list the US operating history of these firms outside of

North Dakota. In the 10 years prior to the period I study, these firms collectively completed

tens of thousands of conventional, non-shale wells.40 However, they only completed 299 shale

wells, suggesting that they collectively had very little experience with the technology necessary to

develop wells in the Bakken Shale. Only EOG had previously completed more than 100 shale wells,

and four firms had done none. During 2005-2012, all ten firms are active outside North Dakota,

with five firms completing more than a thousand wells each. Except for EOG and XTO, the vast

majority of contemporaneous operational experience outside North Dakota is in non-shale wells,

though all firms firms do complete non-Bakken shale wells. Thus, there is limited scope for these

firms to learn about fracking from experience outside of the Bakken.

3 The Fracking Production Function

To quantify what knowledge firms learn about fracking, it is necessary to measure the empirical

relationship between oil production, location and fracking input choices. I do this by estimating a

36I also collect additional lease information from NDRIN for counties and time periods not covered by DrillingInfo.
37To account for the possibility that firms may have older mineral rights that are not in mineral rights databases yet, I

also assume that firms who operate pre-2005 non-shale wells in a section ( 1
36

th
of a township) also have leases in that section.

38That is, I assume that no mineral rights owners are non-participants. Since only 199 out of 4,408 wells in this time period
had risk penalty challenges, and risk penalty cases rarely happen between operators, this is likely a reasonable assumption.

39In early 2012, Statoil ASA, a publicly traded Norwegian oil & gas company, purchased Brigham. Prior to 2012, Brigham
was publicly traded in the US.

40I define a “shale” well as a well with a horizontal segment that is drilled into a formation listed on the US EIA shale
map, available here: http://www.eia.gov/oil gas/rpd/shale gas.pdf.
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production function for fracking. This production function accounts for variation in oil production

across a well’s life and variation between wells in average production levels.

A well’s production changes over time due to age and maintenance-driven downtime. I measure

the impact of these factors on oil production using a simple model common in the petroleum

engineering literature. Because a well’s age is outside the firm’s control and because maintenance

needs are both similar across wells and scheduled in advance, I argue that the time-varying error

in production is plausibly exogenous.

Wells have di↵erent average production levels due to di↵erences in their horizontal lengths,

locations and fracking inputs. Location and fracking inputs may nonlinearly a↵ect production,

so I measure their impact non-parametrically, using Gaussian process regression (GPR), which

I describe in detail below. The well-specific error in average production includes the e↵ects of

unobserved inputs, such as chemicals, the unobserved amount of oil that can be recovered and its

sensitivity to fracking. I argue that chemical choices are independent of sand and water choices for

engineering reasons, and that the information which only firms observe about the well’s specific

geological properties while drilling is unlikely to be correlated with production outcomes.

In the next two sections, I explain this production function model in further detail.

3.1 The Time Series of Oil Production

Per unit of time, wells of all kinds (including non-fracked wells in conventional formations) tend

to produce more oil when they are younger and less oil when they are older. This decline in

performance over time is not surprising, because the amount of oil that can be recovered is finite

and as more of it is pumped out of the ground, the rest becomes more di�cult to recover. For

nearly 70 years, petroleum engineers have used the simple ”Arps” model to illustrate this basic

phenomenon (see Fetkovich 1980). The Arps model states that oil production in the t-th month

of well i’s life is:

Y
it

= Q
i

t� exp(⌫
it

)

where Q
i

is the baseline level of production, � < 0 is a constant governing the production decline

of the well and ⌫
it

is a mean-zero production shock. In log terms, this is

log Y
it

= logQ
i

+ � log t+ ⌫
it

meaning that a 1% increase in a well’s age should decrease per period production by ��%, on

average.

The operator of a well chooses D
it

, the number of days during month t that well i is producing.

Unless the well needs maintenance, there is no reason the operator would choose to produce for

fewer than the full number of days during a month. All wells experience two routine maintenance

events: the installation of external pumping hardware, and the connection of the well to a gas

pipeline network. During maintenance, the operator must shut the well down, reducing D
it

. My

data does not indicate whether maintenance occurs in a month, but it does report the number of
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producing days D
it

, which I incorporate in the model:

log Y
it

= logQ
i

+ � log t+ � logD
it

+ ⌫
it

The time-varying shock to log production, ⌫
it

, is the result of unobserved geological variation and

deviations from the Arps model. Firms cannot control t, the age of a well, and it is unlikely

that firms observe anything correlated with ⌫ before choosing to do maintenance. Even if they

did, firms would rather have the well producing on more days than fewer days, independent of ⌫.

Moreover, firms cannot predict ⌫ when fracking the well, which happens before production starts.

For these reasons, I assume that ⌫ is exogenous:

E [⌫
it

| t,H
i

, D
it

, S
i

,W
i

, lat
i

, lon
i

] = 0

3.2 The Cross Section of Oil Production

I specify a semi-parametric model for logQ, the log of baseline production:

logQ
i

= ↵ + ⌘ logH
i

+ f(S
i

,W
i

, lat
i

, lon
i

) + ✏
i

The parametric part of this model, ↵+⌘ logH
i

, is a Cobb-Douglas production function relating the

horizontal length of a well to its baseline production. Because wells with longer horizontal segments

have more contact with oil-bearing rock, it is likely that ⌘ > 0. However, it is not obvious that

longer wells should proportionately produce more than shorter wells (i.e., that ⌘ should equal one).

Fracking treatments applied to the toe of the well, the point on the horizontal segment furthest

away from the vertical segment, may not be as e↵ective as treatments applied to the heel, where

the wellbore switches from vertical to horizontal. If this is the case, ⌘ may be less than one. The

intercept ↵ measures average Hicks-neutral baseline productivity and I discuss ✏
i

below.

The function f(S
i

,W
i

, lat
i

, lon
i

) = f(Z
i

) captures the relationship between baseline production,

location and fracking choices. Current petroleum engineering suggests that this relationship di↵ers

across locations and is nonlinear and non-monotonic in its inputs. For this reason, I estimate f(Z
i

)

non-parametrically, using Gaussian process regression, or GPR. GPR makes kernel regression

techniques easily available within a panel data framework and have a natural interpretation in

learning settings. Because there are few examples of GPR in applied economic settings, I provide

a basic overview of its application here.

3.2.1 Gaussian process regression

A Gaussian Process G is a probability distribution over continuous real functions. This probability

distribution is defined by two functions: a mean function m(Z) and a positive definite covariance

function k(Z,Z 0). The mean function of a Gaussian Process G is the expectation of the value of

a function f drawn at random from G evaluated at the point Z. The covariance function is the

covariance between f(Z) and f(Z 0). In mathematical terms, the mean and covariance functions
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satisfy:

m(Z) =

Z
f(Z)dG(f)

k(Z,Z 0) =

Z
(f(Z)�m(Z))(f(Z 0)�m(Z 0))dG(f)

A Gaussian Process is “Gaussian” because the joint distribution of the values f(Z
1

)...f(Z
N

) is

multivariate normal, with a mean vector µ and covariance matrix ⌃ given by:

µ = (m(Z
1

)...m(Z
N

))>

⌃
i,j

= k(Z
i

, Z
j

)

This implies that the distribution of f(Z) is also normal with mean m(Z) and variance k(Z,Z).

The normality property makes it easy to compute the likelihood that a dataset is generated by a

function drawn from a Gaussian process with mean m(Z) and covariance k(Z,Z 0). This likelihood

can be used to find the best fitting mean and covariance functions for the data or to compute

posterior beliefs about the distribution of f(Z).

Conditional on a dataset (g
i

, Z
i

)N
i=1

= (g,Z), the posterior distribution of f evaluated at an

out-of-sample point eZ is normal, with mean and variance given by:

E
h
f( eZ) | g,Z

i
= m

⇣
eZ
⌘
+ k( eZ)>K�1 (m� g)

V
h
f( eZ) | g,Z

i
= k( eZ)>K�1k( eZ)

where k( eZ) = (k(Z
1

, eZ)...k(Z
N

, eZ))>. This is a result of the normality property above, and the

Gauss-Markov theorem. Note that the formula for the mean of f( eZ) is similar to the formula for

the estimated regression function in kernel regression41 and that the formula for the variance does

not depend on the observed values g.

Gaussian processes are commonly used in the artificial intelligence and operations research

literatures, though their application in economics is now becoming more common, with recent

work by Chetverikov et al. (2013), Kasy (2013), Meagher and Strachan (2014) and others. For a

detailed treatment of Gaussian processes, see Rasmussen and Williams (2005).

3.3 Specification of k(Z,Z 0) and m(Z)

To estimate the Gaussian process portion of the production function for fracking, I must make

assumptions about the form of the covariance and mean functions. For the covariance function, I

41In kernel regression, the term k( eZ)>K�1 in the estimated regression function is replaced with k( eZ)>P
i k(Zi, eZ)

. However, the

estimates of variance in kernel regression are are not directly comparable to the variance formulas in GPR.
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assume that k(Z,Z 0) is a multivariate normal kernel:42

k(Z
i

, Z
j

| �) = exp(2�
0

) exp

 
�1

2

X

d2S,W,lat,lon

(Z
i,d

� Z
j,d

)2

exp(2�
d

)

!

The first parameter, �
0

, controls the variance of realizations of functions drawn from the Gaussian

Process for f(Z). To see this, note that as points (Z
i

, Z
j

) become arbitrarily close to each other, the

covariance function approaches exp(2�
0

). Thus, higher values of �
0

are associated with Gaussian

processes whose functions are less predictable. The remaining parameters � = (�
S

, �
W

, �
lat

, �
lon

)

measure how smooth realizations of f are in each dimension. Larger values of �
d

are associated

with function realizations that are flatter across dimension d.

I assume that the mean function m(Z) is a Cobb-Douglas production function for sand and

water use that varies across locations. To parameterize the dependence of the Cobb-Douglas

parameters on location, I assume they are linear combinations of the location-specific geology

characteristics in the bottom panel of Table 1. Specifically, I assume that:

m(Z) = m(S,W, lat, lon)

= !
0

+R(lat, lon)!
R

+ log(S) (!
S

+R(lat, lon)!
R,S

) + log(W ) (!
W

+R(lat, lon)!
R,W

)

= m(Z,R | !)

whereR(lat, lon) is a row vector of total organic content, total formation thickness and the maturity

score specific to (lat, lon), and the !’s are parameters to be estimated. The first parameter, !
0

,

represents the average Hicks-neutral productivity common to all wells and fracking input choices.

The vector !
R

represents Hicks-neutral productivity shifters which depend on the location of a well

through its geology characteristics. If these parameters are nonzero, the mean function predicts

that di↵erent locations have di↵erent amounts of recoverable oil. !
S

and !
W

represent the average

Cobb-Douglas productivity of sand and water use in fracking. Finally, !
R,S

and !
R,W

are vectors

of Cobb-Douglas productivity shifters for sand and water, respectively. If these parameters are

nonzero, then the mean function predicts that the sensitivity of oil production to fracking inputs

varies across locations with di↵erent geological characteristics.

3.3.1 The Well-Specific Shock ✏
i

The well-specific shock to log baseline production, ✏
i

, contains unobserved inputs to the fracking

process and unobservable variation in geology. Fracking chemicals are the main unobserved input.43

Firms primarily use chemicals to inhibit bacterial growth in the fracking mixture, to provide

lubrication for the pumping units used in fracking and to prevent corrosion and mineral scaling in

42This is the most commonly used covariance function in applied computer science and operations research studies.
43Another unobserved input is the characteristics of the piping and fracking hardware that firms use to implement frack

jobs. This hardware determines the number of fracture initiation points, their distribution across the lateral segment and
the level of pressure inside the wellbore.
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the well pipe.44 There is evidence in the petroleum engineering literature that an operator’s choice

of chemicals does not directly a↵ect the e�ciency of its sand and water choices, so I assume that

sand and water choices are independent of chemical choices.45

The growing petroleum engineering literature on the Bakken emphasizes the importance of

spatial variation in explaining both recoverable oil and sensitivity to fracking inputs.46 Some of

this variation has observable proxies, like thickness, TOC and maturity. However, there is much less

publicly available data regarding other important rock characteristics, including permeability. If

firms have private information about permeability or other geology characteristics, they may adjust

their fracking inputs in response and ✏
i

will not be independent of these choices. Unfortunately,

I do not have instruments for fracking input choices, so it is important to consider what addition

information firms could have about the wells they are fracking and whether they use it to make

fracking decisions.

For the vast majority of wells, firms do not have well-specific information about the thickness,

organic content, thermal maturity or permeability of the rock they drill into. To get this infor-

mation, firms must perform expensive and time-consuming geological tests, the results of which

are publicly documented by the NDIC.47 These tests are only possible if firms elect to drill the

vertical portion of the wellbore all the way through the entire Bakken formation, and collect a core

sample, which they rarely do. To emphasize this point, consider that Sitchler et al. (2013), a recent

petroleum engineering study of well performance, fracking inputs, and geology characteristics, has

the necessary data for just seven wells.

Firms do have a potentially useful source of information about well quality in the samples of

rock that they collect during drilling, called “cuttings”. As the drill bit passes through the upper

Bakken shale on its way into the middle Bakken, firms can analyze the returned rock, which may

be indicative of the amount of the oil and the level of permeability in the upper Bakken shale at

the location where the horizontal segment starts. However, since the goal in horizontal drilling

is to stay inside the middle Bakken, firms receive no additional information about the upper

Bakken shale and receive no information at all about the lower Bakken shale during the course

of drilling. Moreover, the characteristics of the upper Bakken shale can change over the length

of the horizontal segment, and there is no guarantee that the lower Bakken shale has the same

characteristics at a point as the upper Bakken shale. During the time period I study, laboratory

tools to infer rock properties like permeability from cuttings data had not yet been developed.48

Thus, the information firms can acquire during drilling is unlikely to be helpful in choosing fracking

inputs, and in practice may not be used at all.

44See http://www.fracfocus.org for further details on the chemicals used in fracking.
45See, for example, Jabbari et al. (2012)
46See Baihly et al. (2012), Jabbari et al. (2012) and Saputelli et al. (2014)
47Specifically, firms use gamma ray well logs to determine thickness, rock evaluation pyrolysis of cuttings or well cores to

measure organic content and thermal maturity and drill stem tests or MRI/NMR tests to measure permeability.
48See, for example, Ortega et al. (2012), who note that “Cuttings have not been used in the past quantitatively for

optimization of hydraulic fracturing jobs.”
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For these reasons, I argue that ✏
i

is exogenous to firm choices and other well characteristics:

E [✏
i

| t,H
i

, D
it

, S
i

,W
i

, lat
i

, lon
i

, R(·)] = 0

Combining everything together, the whole production function model is:

log Y
it

= ↵ + � log t+ � logD
it

+ ⌘ logH
i

+ f(Z
i

) + ✏
i

+ ⌫
it

Since Gaussian process regression generates a normal likelihood for f(Z
i

), I assume that ⌫
it

and ✏
i

are both normal, with zero mean and variances �2

⌫

and �2

✏

, respectively.

3.4 Zero Production Events

Empirically, wells occasionally do not producing at all during a month. This is typically caused by

logistical delays in maintenance events, as subsequent production is at or above previous production

levels. However, since the above production function model is specified in logs, I am implicitly

assuming non-zero production always happens. To account for the zero production months in my

data, I compute the empirical probability of zero production, conditional on a well’s age, using

a linear probability model. Later on, I use these probabilities in computing the distribution of

present discounted revenues.49

3.5 Likelihood

I calculate the likelihood function in two steps. In the first step, I treat the unobserved e↵ect

of fracking and location f(Z
i

) as observed and compute the likelihood of (Y
it

, X
it

) conditional on

f(Z
i

) and the parameters. In the second step, I integrate out the unobserved values of f(Z
i

) using

the likelihood function for f(Z
i

) generated by GPR. I describe the likelihood calculation in detail

in the appendix.

3.6 Production Function Estimates

Table 5 shows maximum likelihood estimates of several production function specifications. Column

1 shows a baseline Gaussian process specification, in which the non-constant mean function coe�-

cients are set to zero, while column 2 shows the full mean function. The remaining columns show

estimates of a production function which replaces the non-parametric term f(S
i

,W
i

, lat
i

, lon
i

) with

township fixed e↵ects and the mean function itself. In columns 3 and 4, coe�cients for the geology

covariates and their interactions with sand and water use are set to zero, similar to column 1.

Columns 5 and 6 show unrestricted estimates.

Across all six specifications, the common coe�cients (↵, �, �, ⌘) have similar values that are

precisely estimated. As expected, wells produce less oil per month as they age, with an estimated

49The probability of zero production in a month during the well’s first year is 0.0171, 0.0226 in the second year, 0.0297 in
the third year, 0.0407 in the fourth year, and 0.0697 in the fifth and later years.
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log decline rate of approximately �0.56.50 The coe�cient on days producing is approximately 1.17,

suggesting that when wells produce for less than a full month, production per day is lower than

when wells for the whole month. Wells with longer horizontal segments produce more oil than wells

with shorter segments, but the e↵ect is not linear and estimates of its magnitude are di↵erent with

and without spatial controls. In specifications that include some kind of spatial controls (columns

1, 2, 4 and 6), the estimated return to doubling the horizontal length of a well is an increase in

baseline production of 80-85%. In the Cobb-Douglas specifications without township fixed e↵ects

(columns 3 and 5), the return is considerably smaller, only 43-48%, suggesting that there may be

large di↵erences across locations in baseline production that are correlated with firms’ horizontal

length choices.

In both Gaussian Process specifications (columns 1 and 2), the estimated values of the smooth-

ness parameters indicate that production varies more across locations than across input choices.

To see this, note that the correlation in baseline production between two wells that are identical

except for a di↵erence � in input k is exp
⇣
�1

2

�

2

exp(2�k)

⌘
.51 Thus, for a pair of wells in the same

township (i.e., nearly identical latitude and longitude) whose sand use di↵ers by 128 lbs/foot (1

standard deviation), the correlation in production is 0.93.52 By comparison, for wells that are

located in vertically adjacent townships (so that they are approximately 0.12 longitude degrees

away from each other) and have identical fracking inputs, the correlation is only 0.25.

Overall, the estimated geology data does a poor job of explaining baseline production. Most

of the parameter estimates for the mean function in column 2 are not significantly di↵erent from

zero, and take on values that are inconsistent with geological intuitions.53 More thermally mature

areas have higher production, while areas with higher organic content have lower production, and

thickness does not reliably predict production. Most of the remaining mean function coe�cients

are not significantly di↵erent from zero. Moreover, the covariance function smoothing parameter

estimates in columns 1 and 2 are statistically indistinguishable, and the R2 values of the two

models di↵er by less than 0.001. Similar patterns occur in the parametric specifications as well.

These results suggest that the estimated geology covariates provide limited explanatory power.

The estimates in columns 2 and 6 both fit the data reasonably well, having R2 values of 0.74

and 0.69, respectively. Much of this is driven by a strong cross sectional fit, with “between” R2’s,

which measure the correlation of predicted baseline production and actual baseline production,

are higher, at 0.81 and 0.71, respectively. The production function models fit the data well for

several reasons. Both the inputs to fracking, sand and water, and the single output of fracking,

crude oil production, are precisely measured. The main unobserved input, fracking chemicals,

does not directly a↵ect production or observed input choices, and Gaussian Process regression

flexibly controls for spatial heterogeneity. Moreover, the production function for fracking is an

approximation to a true physical relationship between sand, water, location and oil production.

50Current geophysics research on the Bakken has found similar decline rates. Hough and McClurg (2011), for example,
estimates the decline rate to be �0.5.

51This is a direct application of the definition of the covariance function specified in section 3.3
52For a one standard deviation di↵erence in water use (138 gals/foot) the correlation is 0.89.
53Recall that geology models predict that production should increase with thickness, thermal maturity and organic content.
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To visualize estimates of the 4-dimensional baseline production function, Figure 6 shows contour

plots over sand and water use, evaluated at average GPS coordinates of the most active township,

as well as its northern neighbor.54 The contour lines are iso-production curves, or combinations

of sand and water choices with the same estimated baseline production. The top two panels show

Gaussian Process estimates (column 2) at these two locations. In both locations, greater sand

use is associated with higher oil production for almost all levels of water use, while greater water

use is associated with lower production, except at the highest level of sand use. These contour

plots highlight how di↵erent the production function can be at nearby locations. In the first panel,

the input bundle with highest average production is at the highest levels of sand use and lowest

levels of water use. In the second panel, highest production occurs at high levels of sand use and

intermediate levels of water use. The “peaks” in the two panels also have di↵erent levels, with

the left panel attaining a maximum of about 6.60 log points, and the right attaining 6.15 log

points. These figures provide strong evidence of non-monotonicity and spatial heterogeneity in the

estimated production function.

To demonstrate the limitations of the parametric production function estimates, the bottom

two panels show contour plots using Cobb-Douglas estimates (column 6). In these townships,

both sand and water use are estimated to have positive returns to scale, so more aggressive frack

jobs are always more productive than less aggressive frack jobs. As in the Gaussian Process

specifications, the left panel shows higher baseline production levels than the right panel, providing

similar evidence for spatial heterogeneity. However, due to the Cobb-Douglas assumption, non-

monotonicity is impossible and the sole driver of spatial heterogeneity is di↵erences in the estimated

geology covariates.

Figure 6 makes it clear that the Gaussian Process and Cobb-Douglas specifications make fairly

di↵erent predictions about the impact of fracking inputs on oil production. However, these dif-

ferences primarily occur in areas of the input space that are “out of sample”. For example, near

the average sand and water choices for the most active township, 261 lbs and 138 gals per foot,

respectively, the Gaussian Process and Cobb-Douglas models both predict approximately 5.80 log

points of baseline production. Thus, “in sample”, the two models make nearly identical predic-

tions. At input levels further away, they di↵er starkly. For higher levels of sand use and low to

intermediate values of water use, the Cobb-Douglas model predicts 0.25 to 0.75 more log points

of baseline production than the Gaussian Process model. In contrast, for higher levels of sand

use and lower levels of water use, it is the Gaussian Process model that predicts higher baseline

production.

Overall, both production function specifications predict that baseline production is higher under

higher sand and water use in most locations. To visualize this, Figure 7 plots the di↵erence between

estimated production at “high” and “low” input bundles across space, for both production function

specifications. The high input bundle is a frack job with sand use and water use set to their

respective 75th percentiles, and the low input bundle sets them to their respective 25th percentiles.

Figure 7 is a “heat map”, with red areas indicating that high input bundles are more productive

54The most active township is 154-92 and its northern neighbor is 154-93
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than low input bundles, blue areas indicating the reverse and green areas indicating no productivity

di↵erences. The black dots are the locations of wells. The left panel, showing Gaussian Process

estimates, indicates that higher inputs are more productive than lower inputs in most locations.

In several clusters of wells, the di↵erence is greater than 0.50 log points. One exception is a cluster

of townships in the North East quadrant of the play, where higher inputs are significantly less

productive than lower inputs. In contrast, the right panel, which shows Cobb-Douglas estimates,

indicates that higher inputs are always a bit more productive than lower inputs, with little spatial

heterogeneity in the productivity gain.

In order for firms to learn the relationship between baseline oil production, fracking inputs, and

location, the relationship must be stable over time. I test for stability by regressing b✏
i

, the estimated

random e↵ects from the production function estimates, onto dummy variables for the cohort a well

belongs to. Figure 8 graphs the estimates of and confidence intervals for the coe�cients on these

dummy variables across years. While the 32 wells in the 2005 and 2006 cohorts are indeed less

productive than later wells, the remaining 4,376 wells in the later years are equally productive.

Though a Wald test rejects the hypothesis that wells in the 2007 through 2012 cohorts are equally

productive at the 1% level, this is entirely driven by the wells in the 2009 cohort, which appear to

be 0.02-0.05 log points more productive than wells in earlier and later cohorts.

4 Evidence for Learning

I look for three types of evidence that firms are learning. First, I check if wells fracked by firms

with more experience produce more oil than similar wells fracked by firms with less experience.

That is, I estimate a traditional Learning-by-Doing model, similar to Kellogg (2011) or Benkard

(2000). Next, to determine if firms are specifically learning the shape of the fracking production

function, I next ask whether firms make more profitable input choices over time. To do this, I

calculate profits with respect to information firms had when they were making fracking choices,

which I call ex ante profits, as well as profits calculated using all of the data in this study, which

I call ex post profits.

4.1 Learning to be Productive

To measure if firms learn to be more productive, I regress the production function residuals b✏
i

onto

cohort dummies and various measures of experience. “Total” wells is simply the number of wells in

a firm’s information set, while “operated” wells are those wells in the information set that the firm

fracked itself. Because it is likely that the production function is spatially heterogeneous, I also

compute the number of “total” and “operated” wells that are within 1 township of a well, which

I call “close” experience. Table 6 shows estimates of the coe�cient on these experience variables,

both in levels and in logs.55

Overall, the production function residuals are not systematically correlated with experience. In

55Technically, log(1 + experience), for many wells are fracked by firms with no experience.
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levels, all measures of experience are negatively correlated with the production function residuals,

but only the two “close” experience variables are statistically significantly di↵erent from zero.

In logs, two of the measures are positively correlated and two are negatively correlated. The

only measure of experience with the same precisely estimated sign in both levels and logs is close

operated experience, which, surprisingly, is negative. These results suggest that if experience is

correlated with production, it is not in the way predicted by a theory of Learning-by-Doing.

4.2 Learning to be Profitable

Though firms may not be learning to be more productive, they might learn to make more profitable

choices. This is an important distinction: more productive wells produce more oil, conditional on

input choices, but it may still be possible for firms to make more profitable input choices as they

better learn the production function for fracking. If oil prices, input costs and the quality and

size of drilling locations were constant over time, I could test this prediction by extrapolating

future production from current production and simply check if average expected discounted profits

per well increased over time. However, oil prices, input costs and locations do vary over time,

so I control for this variation by examining trends in the ratio of actual profits to counterfactual

maximal profits. I call this ratio “profit capture”.

I use the fracking production function to compute profits. The profits to well i fracked using

fracking inputs j are

⇧
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where � is the fraction of oil production the firm keeps for itself, P
i

is the price the firm will

receive for its oil production, T is the number of periods the well is expected to produce for, ⇢ is

the per-period discount rate, eY
ijt

is the realization of the level of oil production for well i under

fracking design j at age t, M
it

is a Bernouli random variable for the event that the well has non-

zero production, and c
i

(S
j

,W
j

) is the total cost of drilling and fracking that design.56 The main

empirical object needed in the calculation of ⇧
ij

is the expected present value of discounted oil

production, E [DOP
ij
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I compute this expectation using the Gaussian Process production function estimates specified in

56I assume firms believe oil prices follow a martingale process, and thus use a single price, Pi for all future revenues.
Additionally, I assume that the fraction of oil revenue that accrues to the firms is 70%, based on typical royalty rates of
16.5%, state taxes of 11.5% and ongoing operating costs of 2%. I set T = 240 months, though the NDIC expects Bakken
wells to produce for 540 months, making these profit calculations an underestimate. I set ⇢ = .9, which is the standard
discount rate use in oil & gas accounting. At this rate, the di↵erence between 540 months and 240 months is only 2.6% in
present value terms.
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column 2 of Table 5 generated by two di↵erent information sets: the full data that I have, and the

data each firm had when it made a fracking input decision. The first case represents an ex post

expectation, and provides a way of asking whether firms made better fracking design decisions over

time, given today’s knowledge. The second case represents an ex ante expectation, and provides

a way of asking whether firms’ choices were consistent with static profit maximization, given my

measures of their information sets.

In both cases, I combine the parameter estimates of the mean function and variance terms

from column 2 in Table 5 with the normality assumptions on the unobserved terms to compute a

probability distribution over oil production. Since the production function estimates depend on

the full dataset, this means that I am computing ex ante expectations under the assumption that

firms had the same beliefs about the mean function as I do now. This is a strong assumption,

and the ex ante calculation of expected oil production will be biased if firms had di↵erent beliefs

than I do. However, it is likely that these biases are small, as decline rates can be predicted

using geophysical models57 and bandwidth and variance parameters do not a↵ect the asymptotic

properties the production function estimate.58 Moreover, most of the impact of fracking inputs and

location f(Z) on baseline oil production is computed non-parametrically from both the bandwidth

parameters � and the information set. Thus firms with di↵erent information sets will have di↵erent

beliefs about f(Z), and these beliefs will di↵er from the ex post beliefs as well.

I present the full calculation of expected discounted oil production in the appendix.

4.3 ex post Comparisons

Over time, firms choose fracking designs with higher ex post expected profits. The top half of Figure

9 plots the ex post ratio of actual profits to maximal profits per well.59 The average fraction of

profits captured increases nearly monotonically over time, from 21% in 2005 to 60% in 2012. The

bottom half of Figure 9 shows how these maximal profits evolve over time. When oil prices were at

their peak in 2008, the profit maximizing input choice for the average well would have generated

$25.2 million in profits, meaning that in 2008, foregone profits from ine�cient fracking choices

averaged $14.6 million per well. By 2012, lower oil prices reduced these maximal profits to $15.9

million per well. Combined with the higher fraction of profits captured, firms in 2011 left only

$7.0 million per well on the table.

Firms captured more profits by selecting more profitable fracking designs over time. In Figure

10, I plot average profit maximizing and actual input use per well over time. Though firms use

less sand in fracking than the estimated profit maximizing levels, starting in 2009, actual choices

approach optimal choices. Through 2008, the average well was fracked with approximately 251

lbs sand per foot less than the profit maximizing level. In the following years, this di↵erence falls

monotonically until reaching 96 lbs per foot in 2012. Though the di↵erences in actual and optimal

water use start out considerably larger than the di↵erences in sand use, actual water choices get
57See Fetkovich (1980).
58See section 7.1 in Rasmussen and Williams (2005).
59I only include wells in this calculation that have both positive actual profits and positive maximal profits. Over the

entire sample, 10% of wells have either negative actual profits or negative maximal profits.
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closer to optimal water choices in almost every year. In 2005, firms fracked the average well with

425 gals per foot less water than the water use in the optimal well. By 2012, the di↵erence is only

217 gals per foot. These trends in actual input use towards optimal input use are consistent with

the idea that firms are learning about the e�cient use of fracking inputs as they observe more

data, and with this knowledge they make more profitable choices.

4.4 ex ante Comparisons

Though firms made fracking choices that failed to capture a substantial portion of ex post profits,

it is possible that, given the information they had, firms may have believed they were making

profitable choices. To evaluate this prospect, I repeat the previous analysis, calculating profits using

the actual information available to firms when they made fracking input choices. The top half of

Figure 11 plots the ratio of actual profits to maximal profits per well using ex ante expectations.60

Firms initially made fracking input choices with expected profits that are close to the optimal

choices, capturing 79% of potential ex ante profits in 2005. However, ex ante profit capture

actually falls over time, reaching 60% in 2012, the same level as the ex post case in 2012.

While the fraction of profits captured falls, ex ante expectations of maximal profits rise from

2005-2008 and again from 2009-2011, as show in the bottom half of Figure 11. Unlike the ex post

case, where the highest level of maximal profits coincides with the 2008 peak in oil prices, ex ante

maximal profits are highest in 2011, reaching $20.6 million per well. Though average oil prices are

similar in 2008 ($100 per bbl) and 2011 ($95 per bbl), firms have much more information about

fracking in 2011 and this information generates more optimistic expectations. The combined e↵ect

of falling ex ante profit capture and rising maximal profits increases foregone ex ante profits from

less than 1 million in 2005 to $8.0 million in 2012.

Firms capture a shrinking fraction of ex ante profits over time because actual input use is

persistently below the expected profit maximizing level. Figure 12 plots average profit maximizing

and actual sand use per well over time. In 2005 and 2006, actual sand use is quite similar to

ex ante optimal sand use. However, as new data accumulates, optimal sand use increases faster

than actual sand use, and by 2012, the di↵erence between optimal and actual sand use is greater

than 100 lbs per foot, approximately the standard deviation of sand use in that year. Though

this di↵erence is similar to the di↵erence in the ex post case during 2012, it is striking that the

di↵erences in actual and optimal sand use increase over time in the ex ante case while decreasing

in the ex post case.

The bottom panel of Figure 12 plots average ex ante optimal and actual water use per well,

showing a similar pattern to the ex post case: on average, firms use less than the ex ante optimal

amount of water in fracking, but make improved water choices over time, especially after 2008.

From 2005 to 2008, firms use 303 gals per foot less water than the optimal level, on average. This

di↵erence shrinks in each subsequent year, and by 2012, it is only 142 gals per foot, less than the

standard deviation of water use in that year.

60As in the ex post case, I only include wells in this calculation that have both positive actual profits and positive maximal
profits. Over the entire sample, 12.8% of wells have either negative actual profits or negative maximal profits.
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5 Fracking input choice model

Though firms do learn to make more profitable choices over time, many of their choices do not

coincide with the predicted optimal choices, even on an ex ante basis. I consider two possible

explanations for this phenomenon based on firm preferences. First, firms may care about the

uncertainty in their estimates of the profits from fracking with a given choice of inputs. Second,

in learning the production function, firms may weigh their own data di↵erently than the data

generated by their competitors.

5.1 Preferences Over Uncertainty

In comparing the expected profits a firm earned to the maximal expected profits a firm could

have earned, I have implicitly assumed that the correct strategy is for firms to select fracking

designs solely on the basis of expected profits, without regard to the uncertainty of profits across

designs. There are two potential problems with this assumption. First, viewing fracking design

as an investment project selection problem, there may be financial or organizational factors that

cause firms to have preference over uncertainty. Second, when learning about the performance

of di↵erent fracking designs, firms may care about uncertainty through the explore vs. exploit

tradeo↵ that exists in all learning problems.

Though it is appropriate for firms to ignore uncertainty in simple and frictionless models of

investment project selection, there are practical reasons why uncertainty may matter. Firms raise

outside capital to finance operations and the presence of debt capital could lead firms to select

fracking designs with higher uncertainty, as bond holders bear the downside risk. On the other

hand, capital constrained firms may not necessarily have the option of selecting fracking designs

with higher uncertainty if they are more expensive to implement. Financial considerations can thus

push firms towards or away from fracking designs with more uncertain profits. Firms must also

hire and incentivize potentially risk averse engineers, who select fracking designs. Depending on

the extent of their career concerns and the structure of their compensation, engineers themselves

may have preferences over uncertainty.

In addition to finance-driven preferences over uncertainty, the prescribed learning strategies in

most theoretical models of learning involve uncertainty seeking behavior. Analyses of the explore

vs. exploit tradeo↵ in learning predict that agents should always do some amount of exploration,

by selecting actions with more uncertain payo↵s. This tradeo↵ will frequently require agents to

sacrifice expected payo↵s in the present in order to acquire uncertainty resolution in the future.

Since actions with the more uncertain payo↵s can resolve more future uncertainty, experimenting

agents should have a positive taste for uncertainty.

Most theory models predict that agents will experiment, at least initially. In most of the settings

studied by Aghion et al. (1991), a fully rational, expected present discounted value maximizing

agent will do some amount of exploring forever and a similar result obtains in the multi-agent

context studied by Bolton and Harris (1999). The implied preferences for uncertainty in both of

these models arise out of the natural dynamics of learning problems. Agents are still risk neutral
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over their payo↵s, but because there is present value to better information in the future, they

prefer those actions with uncertain payo↵s which can produce more future information.

Empirically, the oil industry as a whole exhibits both risk seeking and risk averse behavior.

The process of acquiring mineral rights for new drilling prospects and establishing the existence

of oil within those prospects is an especially risky one (see, for example Walls and Dyer 1996 and

Reiss 1989). However, oil companies are price takers in the world market for oil, and many use

financial markets to hedge some or all of their future oil production, suggesting that firms may

wish to avoid risks associated with future price fluctuations (see Haushalter 2000).

Whether the companies I study here prefer fracking input choices with more or less uncertain

production is an empirical question. To answer it, I estimate the preferences firms have over

the expectation and standard deviations of the profits to fracking designs. I use a simple logit

preference model in which the “utility” a firm has for fracking design j on well i is:
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firm’s preference over expected present discounted revenues and the standard deviation of present

discounted revenues, conditional on the data they have. Under this preference specification, the

probability that a firm selects design j for well i is given by the standard logit formula:
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The mean utilities in this preference model are linear in the expectation and standard deviation

of profits to a fracking design. Preferences of this type have precedence in the theoretical learning

literature. Brezzi and Lai (2002) show that a linear combination of the expectation and standard

deviation of the payo↵ to a choice can represent a simple and e�cient approximation to the Gittins

index value for the choice, if the choices have independently distributed payo↵s. Since Gittins and

Jones (1979) show that ordinal preferences over Gittins indices result in dynamically e�cient

learning behavior, agents that utilize these linear approximations attain near-optimal learning.

Though the profits to fracking input choices are not distributed independently, authors in the

computer science and operations research literatures have found that these learning strategies also

perform well in the general case. In those literatures, learning strategies which select the choice with

the highest value of a linear combination of the expectation and standard deviation of payo↵s are

called “upper confidence bound”, or UCB strategies. Rusmevichientong and Tsitsiklis (2010) and

Srinivas et al. (2012) have established that UCB strategies quickly identify the highest performing

choice, and do so in a way which minimizes an agent’s ex post cumulative regret over its past

choices. UCB strategies are also reported to be in use at major technology companies, like Yahoo,

Microsoft and Google (see Chapelle and Li 2011, Graepel et al. 2010 and Scott 2010). Previous
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empirical work on learning in economic settings has assumed that rational decision makers use

UCB learning strategies. For example, Dickstein (2013) estimates the parameters of UCB learning

strategies that rationalize prescribing behavior by physicians.

In all of the existing literature on UCB learning strategies, the weight on the standard deviation

of the payo↵s to a choice is positive, hence the “upper” in upper confidence bound strategies.

Often, the weight actually increases with the square root of the logarithm of the size of an agent’s

information set. That is, agents with more information should have stronger tastes for uncertainty

than agents with less information. For that reason, I also consider preferences with weight on

uncertainty that depends on the size of the information set:
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where | I | is the number of wells that the firm fracking well i can observe.

Table 7 shows maximum likelihood estimates of these parameters for each of the 10 most active

firms, as well as the industry as a whole. For each firm, the first row represents the simplest

preference specification (constant preferences for uncertainty over time), while the second row

allows for time-varying preferences for uncertainty.61 Focusing first on the first row, all firms and

the pooled industry have positive “taste” for the expectation of profits (⇠
m

> 0) of a fracking

design and negative “taste” for the standard deviation (⇠
s,0

< 0). That is, every firm appears to

avoid fracking input choices with high uncertainty. I can reject risk-neutrality for all firms and for

the pooled industry. In dollar terms, firms make choices as if they are willing to accept a reduction

in expected profits of $0.34 to $0.63 for a reduction of $1 in the standard deviation of profits.

There is some evidence that firms’ taste for uncertainty increases with the size of their infor-

mation sets. For five firms and the industry as a whole, estimates of ⇠
s,1

are positive, though it

is not significantly di↵erent from zero for two of those firms. In these six situations where ⇠
s,1

is

positive, it is not large enough in magnitude to generate positive taste for uncertainty, even when

firms have large information sets.62 For three firms, ⇠
s,0

> 0 while ⇠
s,1

< 0. However, this is not

evidence that these firms have a positive taste for uncertainty. In two of these situations, ⇠
s,0

is not

significantly di↵erent than zero, and in the third, the combined taste for uncertainty is negative

for information sets with 43 or more wells.

Overall, Table 7 provides evidence that firms tend to select fracking designs with higher expected

profits and avoid fracking designs with higher standard deviation of profit. This behavior is not

consistent with the notion that firms are actively exploring uncertain fracking designs, but it

is consistent with passively learning firms that are constrained by organizational or financially

motivated aversion to uncertainty.

61The third and fourth rows are discussed in the next section
62To have positive taste for uncertainty, ⇠s,0 + ⇠s,1

p
log | I | > 0. When ⇠s,0 < 0 and ⇠s,1 > 0, this happens if

p
log | I | >

�⇠s,0
⇠s,1

. Since the largest possible information set has fewer than 4,408 wells,
p

log | I | < 2.89, while
�⇠s,0
⇠s,1

is never smaller

than 3.8 for the six firms where ⇠s,0 < 0 and ⇠s,1 > 0.
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5.2 Own-data bias

A di↵erent explanation for firms’ apparent unwillingness to select the fracking design with the

largest expected profits is that I am computing expectations with respect to di↵erent beliefs than

the ones they hold. There are many ways that a firm’s beliefs may be di↵erent than the ones I

calculate: firms may have di↵erent priors about the relationship between fracking inputs, location

and oil production, they may have simpler beliefs about the functional form for that relationship,

or my price and cost data could be di↵erent from the prices and costs firms experience. However, I

focus on a simpler explanation: firms may weigh data from their own experiences di↵erently than

data from the experiences of other firms that they observe through the public disclosure process.

I refer to this possibility as “own-data bias”.

I interpret the “weight” that firms place on a particular well as their beliefs about the variance

of the well-specific baseline production shock, ✏. If firms weigh their own experience more than the

experiences of others, then when forming estimates of the production function, they will believe

that production outcomes from their own wells have less variance than production outcomes from

their competitors’ wells. To measure whether this is happening, I decompose the variance of

baseline production in well i perceived by the operator of well j into two components:

log �
✏ij = [log �

✏

+ �I(i and j operated by same firm)

The first component, [log �
✏

, is the estimated value of log �
✏

from column 2 of Table 5. The second

component, �, is the increase or decrease in perceived variance that operators assign to their own

data, relative to data they only observed. Given a value of �, I can compute an own-data-biased

production function estimate, and use this estimate to calculate the distribution of own-data-biased

discounted oil production, which I write as DOP | �. Finally, I can use the preference model from

the previous section and firms’ input choices to estimate the value of � that best rationalizes firms’

preferences.

Table 7 reports maximum likelihood estimates of �. Overall, the data suggest that firms weigh

their own information more heavily than information generated by their competitors. Of the ten

most active firms, seven have values of � < 0, five of which are statistically significantly di↵erent

from zero. The estimated � for the industry as a whole is also significantly negative. Though

three firms have estimates which are positive, only one of which is significantly di↵erent from

zero. The magnitudes of these estimates are large. For example, the estimate for the pooled

industry suggests that firms believe that the standard deviation of the shocks to log baseline

production for their own wells is about 20% smaller than the standard deviation of shocks for

their competitor’s wells. Moreover, some firms appear to be especially confident about their own

data. For example, Marathon’s revealed preferences are consistent with a belief that the standard

deviation of shocks to their own wells are 64-74% lower than the shocks to their competitors’

wells. Only Whiting’s revealed preferences suggest it believes its own wells are more variant than

its competitors’ wells. Importantly, allowing firms to have own-data bias does not change their

preferences over uncertainty. No firms have positive taste for uncertainty, even when � 6= 0.
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6 Conclusion

This paper provides one of the first empirical analyses of learning behavior in firms using opera-

tional choices, realized profits, and information sets. Oil companies in the North Dakota Bakken

Shale learned to more e�ciently use fracking technology between 2005-2011, increasing their cap-

ture of possible profits from 20% to 60% by making improved fracking design choices over time.

Contrary to the predictions of most theoretical models of learning, I do not find evidence that

firms actively experiment in order to learn. Instead, firms prefer fracking input choices with less

uncertainty, and are willing to give up $0.34-0.63 in expected profits for a reduction of $1 in

the standard deviation of profits. Finally, most firms appear to overweight data from their own

operations relative to the data they observe from their competitors.

From a neoclassical economics perspective, it is surprising that these firms do not experiment,

even though there is enormous value to better information. They operate in an industry known for

its appetite for risk and use of advanced technology and have access to a wealth of data to learn

from. However, they leave money on the table. Across the 4,408 wells in this data, the average

well appears to forego $8.2 million in profits on an ex post basis and $6.5 million on an ex ante

basis, resulting in $29-36 billion in lost profits.

These results complement recent work by petroleum engineers on their own failures to learn to

use to new technologies in a variety of contexts. Authors in this literature note that explicit learning

e↵orts like experiments do happen, but less frequently and later in the development of a formation

than they should.63 Much of this research cites two hurdles to learning: a tendency by operators

to prematurely focus their optimization e↵orts on cost reductions instead of improvements in

operational choices, and the absence of incentive contracts between operators and their service

contractors. The first phenomenon suggests that operators believe they know the production

function with high certainty, but later discover their beliefs were wrong. The second phenomenon

raises important questions about the e↵ects of contractual incompleteness on the oil and gas

exploration industry.
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Figure 1: Diagram of a Hydraulically Fractured Bakken Shale well 
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Figure 2: Diagram of a hypothetical spacing unit
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Figure 3: Quarterly Average Oil Prices for Bakken Producers
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From January 2005 to October 2010, the figure shows the Cushing price minus a $1.75 Cushing-Clearbrook premium. After
October 2010, the figure shows the Clearbrook price.

Figure 4: Fracking Cost Index
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The cost index is computed from the BLS Producer Purchasing Index (PPI) for the Oil & Gas Extraction industry from the
first quarter of 2005 to the fourth quarter of 2007. Then, from the first quarter of 2008 to the fourth quarter of 2009, it is
calculated from the Spears & Associates data for vertical wells in North Dakota. Finally, from the first quarter of 2010 to
the fourth quarter of 2012 it is calculated from the Spears & Associates data for horizontal wells in North Dakota.
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Figure 5: Estimated Costs of Drilling and Fracking
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Figure 6: Contour Plots of Production Function Estimates

(a) Gaussian Process, Most Active Township (b) Gaussian Process, Neighboring Township

(c) Cobb-Douglas, Most Active Township (d) Cobb-Douglas, Neighboring Township

Gaussian Process estimates are based o↵ of column 2 in Table 5, while Cobb-Douglas estimates are based o↵ of column 6.
The most active township is 154-92, and its neighbor is 154-93. The units in all contour plots are log baseline production.
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Figure 7: Estimated Production Di↵erences Between High and Low Inputs

(a) High Minus Low, Gaussian Process (b) High Minus Low, Cobb-Douglas

Gaussian Process estimates are based o↵ of column 2 in Table 5, while Cobb-Douglas estimates are based o↵ of column 6.
The units in all contour plots are log baseline production.

Figure 8: Estimated Productivity Di↵erences Across Years
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Estimates and confidence intervals for year-cohort fixed e↵ects in a regression of production function residuals onto year-
cohort fixed e↵ects.
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Figure 9: Fraction of Positive Profits Captured and Maximal Profits by Year, ex post
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Figure 10: Average Profit Maximizing Input Use and Actual Input Use Per Well, ex post
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Figure 11: Fraction of Positive Profits Captured and Maximal Profits by Year, ex ante
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Figure 12: Average Profit Maximizing Input Use and Actual Input Use Per Well, ex ante
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Table 1: Summary Statistics

Variable Mean Std. Dev P25 P50 P75

Sand (lbs per foot) 276.71 127.75 190.99 277.39 374.07
Water (gals per foot) 214.24 137.77 122.04 201.23 271.20
Length (feet) 8,535.07 1,928.66 8,624.00 9,348.50 9,639.00
Oil (bbls per foot) 10.00 7.51 5.42 8.16 12.18
Average Days 25.89 3.41 24.75 26.75 28.08
# Non-operating Participants 4.23 2.66 2.00 4.00 6.00

Information Set: All Wells

Own Wells 114.89 114.67 25.00 71.00 176.00
Participated Wells 243.41 220.44 67.00 184.50 364.00
Observed Wells 1,446.44 891.96 713.00 1,429.50 2,151.00

Information Set: Close Wells

Own Wells 27.36 36.56 5.00 15.00 35.00
Participated Wells 25.04 28.62 5.00 15.00 34.00
Observed Wells 33.34 40.47 5.00 19.00 49.00

Estimated Geology Characteristics

Total Organic Content 0.14 0.02 0.13 0.14 0.15
Thickness (feet) 43.74 13.50 35.50 43.50 52.50
Thermal Maturity 0.64 0.21 0.50 0.50 0.77

Summary statistics computed across all wells in the sample, N = 4, 408.

Table 2: Summary Statistics by Year

2005 2006 2007 2008 2009 2010 2011 2012

# Wells 14 18 100 365 444 704 1,107 1,656
# Active Firms 8 10 18 29 34 49 49 48

Sand
Average 104.5 125.4 127.1 177.3 210.4 306.8 298.8 301.0
Std. Dev 15.7 137.1 130.8 140.8 143.2 120.1 110.4 107.7

Water
Average 50.3 64.3 86.5 106.9 137.8 214.7 230.6 258.0
Std. Dev 19.2 61.5 47.7 57.6 91.2 98.7 115.2 163.5

Length
Average 6,088.8 6,457.4 7,176.7 7,346.8 7,421.0 8,074.3 8,886.9 9,181.6
Std. Dev 1,573.0 2,077.9 1,983.9 2,161.3 2,295.1 2,133.9 1,705.4 1,358.6

Oil
Average 2.9 4.9 10.3 12.8 11.4 10.9 9.6 9.0
Std. Dev 2.0 6.7 13.1 14.4 9.6 6.6 5.6 5.0

TOC Average 0.14 0.14 0.13 0.14 0.14 0.14 0.14 0.14
Thickness Average 47.00 46.56 40.64 43.19 46.36 44.62 43.34 43.17
Maturity Average 0.74 0.70 0.66 0.63 0.65 0.65 0.64 0.64
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Table 3: Relationship Between Oil Production and Quintiles of Sand and Water Use

Quintiles of Water Use
First Second Third Fourth Fifth

Q
u
in
ti
le
s
of

S
an

d
U
se

First
0.80 1.64 2.86 4.32
(0.45) (0.64) (0.75) (1.12)

Second
1.82 1.20 2.58 3.56 4.24
(0.43) (0.36) (0.43) (0.59) (0.90)

Third
3.67 2.29 3.10 3.50 4.44
(0.56) (0.42) (0.41) (0.42) (0.59)

Fourth
4.52 6.66 3.59 4.14 5.45
(1.25) (0.58) (0.41) (0.40) (0.41)

Fifth
4.65 11.10 7.26 6.06 6.94
(1.78) (0.74) (0.52) (0.45) (0.36)

Regression of oil production in the first year divided by horizontal
length onto sand and water use quintile bins, as well as township
fixed e↵ects. The first quintile bin is omitted, so coe�cients repre-
sent relative changes in average oil production. Standard errors in
parentheses.

Table 4: Wells Completed by the 10 Most Active Firms, by Location, Time and Completion Technique

Firm
North Dakota Outside North Dakota
2005-2012 1995-2004 2005-2012

Bakken Shale Conventional Shale Conventional Shale

Continental Resources 490 332 30 410 568
EOG 426 5,118 182 4,456 3168
Whiting 416 122 2,031 56
Hess 316 757 347 35
Marathon 304 3,062 4 1,075 350
Brigham 241 170 101 23
Oasis 164 10 52
Burlington 160 4,216 28 2,531 805
XTO 155 2,643 39 6,496 3,044
Petro-Hunt 145 103 16 109 36
Rest of industry 1,591
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Table 5: Production Function Model Estimates

(1) (2) (3) (4) (5) (6)
Gaussian Process Gaussian Process Cobb-Douglas Cobb-Douglas Cobb-Douglas Cobb-Douglas

Coe�cient Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error

�0 -0.3923 0.0519 -0.4552 0.0558
�S 6.1910 0.1073 6.2347 0.1294
�W 6.0067 0.1175 6.0079 0.1268
�lat -2.3848 0.0458 -2.4227 0.0509
�lon -2.2974 0.0489 -2.3485 0.0560
↵ -2.5177 0.2361 -2.1914 0.8241 0.3877 0.2955 -3.9305 0.3585 1.7730 0.7489 -2.8046 0.6635
� -0.5592 0.0012 -0.5592 0.0012 -0.5592 0.0012 -0.5593 0.0012 -0.5592 0.0012 -0.5594 0.0012
� 1.1663 0.0025 1.1663 0.0025 1.1662 0.0025 1.1663 0.0025 1.1664 0.0025 1.1663 0.0025
⌘ 0.8525 0.0251 0.8466 0.0251 0.4335 0.0311 0.7966 0.0257 0.4770 0.0308 0.8041 0.0257
!TOC -0.9552 0.4460 -0.8794 0.3961 0.0062 0.3202
!THICK -0.2531 0.8717 -0.5705 0.5853 -2.3859 0.5017
!MATURE 1.1767 0.3846 -0.5281 0.3774 -0.2376 0.2814
!S -0.1951 0.1515 0.2087 0.0165 0.1457 0.0122 -0.3054 0.1632 -0.0528 0.1226
!TOC,S 0.2093 0.0855 0.0933 0.0900 0.0197 0.0697
!THICK,S 0.0180 0.1526 0.7271 0.1328 0.4945 0.1022
!MATURE,S -0.0886 0.0764 0.0790 0.0863 -0.0587 0.0634
!W 0.1718 0.1665 0.0437 0.0168 0.1334 0.0125 0.1856 0.1655 0.1941 0.1292
!TOC,W -0.0599 0.0914 0.0499 0.0891 -0.0483 0.0695
!THICK,W 0.0517 0.1622 -0.4550 0.1394 -0.1389 0.1089
!MATURE,W -0.1075 0.0809 0.0136 0.0846 0.0946 0.0646
log �✏ -1.1807 0.0135 -1.1829 0.0138 -0.5601 0.0109 -1.0264 0.0111 -0.5940 0.0109 -1.0316 0.0111
log �⌫ -0.7885 0.0016 -0.7885 0.0016 -0.7884 0.0016 -0.7885 0.0016 -0.7884 0.0016 -0.7885 0.0016

Township FE No No No Yes No Yes

Overall R2 0.7385 0.7389 0.5046 0.6900 0.5213 0.6915
Between R2 0.8093 0.8100 0.2668 0.7056 0.3130 0.7087

# Wells = 4,408, # Well-months = 193,846. “Between” R2 is the R2 for the average predicted log baseline production. The R2 for the predicted time
series of production is .6717 for all specifications. Maximum likelihood estimates of Cobb-Douglas production function models:

log Yit = ↵+ � log t+ � logDit + ⌘ logHi +m(Zi, Ri | !) + ⌧i + ✏i + ⌫it

and Gaussian process production function models:

log Yit = ↵+ � log t+ � logDit + ⌘ logHi + f(Zi, Ri | �,!) + ✏i + ⌫it

Yit is oil production for well i when it is t months old, Dit is the number of days producing, Hi is the horizontal length, Ri is the vector of organic
content, thickness and maturity, and Zi is the vector of sand use Si, water use Wi, latitude lati and longitude loni. ⌧i is a set of township fixed e↵ects.

45



Table 6: Estimates of Learning-by-Doing

Levels (100s) Logs
Information Set Estimate Std. Err Estimate Std. Err

# Total Wells -0.0008 0.0010 0.0039 0.0217
# Operated Wells -0.0073 0.0043 -0.0052 0.0039
# Close Total Wells -0.0222 0.0070 0.0041 0.0051
# Close Operated Wells -0.0621 0.0143 -0.0092 0.0038

Estimates of ⇢
1

in learning-by-doing production function models:

b✏
i

= ⇢
0

+ ⇢
1

E
i

+
2012X

q=2006

⌥
q

I(i 2 q) + 
i

where E is a measure of previous experience (either the number of wells in an information
set or the log of 1 plus that number), ⌥’s are coe�cients on dummy variables for the year in
which a well is completed, and 

i

is an iid mean zero shock. The number of wells is 4,408.
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Table 7: Uncertainty Preferences

⇠m ⇠s,0 ⇠s,1 �
Firm # Wells Estimate Std. Err Estimate Std. Err Estimate Std. Err Estimate Std. Err

Continental 490

15.47 0.77 -30.83 1.50
15.62 0.82 -22.30 14.28 -3.21 5.35
15.42 0.77 -31.23 1.53 -0.21 0.09
15.63 0.82 -19.64 14.35 -4.36 5.38 -0.21 0.09

EOG 426

6.42 0.34 -15.64 0.89
6.41 0.34 -14.43 4.72 -0.46 1.77
6.41 0.34 -16.03 0.97 -0.17 0.16
6.41 0.34 -14.35 4.61 -0.65 1.74 -0.18 0.16

Whiting 416

10.97 0.62 -32.15 1.80
11.81 0.66 16.92 9.42 -18.65 3.57
11.16 0.63 -32.20 1.80 0.52 0.13
11.91 0.67 19.66 10.02 -19.62 3.78 0.54 0.14

Hess 316

9.88 0.63 -21.81 1.34
8.09 0.66 -68.10 9.62 17.98 3.58
9.90 0.64 -21.81 1.34 0.06 0.17
8.11 0.66 -69.95 9.93 18.68 3.69 0.19 0.17

Marathon 304

12.06 1.00 -34.52 2.33
8.11 1.04 -155.71 19.78 47.1 7.35
12.05 1.02 -35.95 2.48 -1.01 0.35
8.57 1.04 -161.3 19.00 48.44 7.02 -1.36 0.47

Brigham 241

12.45 0.77 -23.78 1.57
16.13 1.01 81.45 13.53 -40.97 5.29
12.64 0.78 -25.60 1.69 -0.39 0.09
16.84 1.05 86.75 13.65 -44.29 5.41 -0.50 0.09

Oasis 164

12.38 1.01 -19.71 1.66
12.66 1.05 3.67 19.87 -8.64 7.36
12.11 1.01 -19.70 1.67 -0.31 0.22
12.45 1.05 11.89 19.67 -11.7 7.31 -0.38 0.22

Burlington 160

10.20 0.92 -22.41 1.91
8.53 0.99 -68.91 14.38 18.14 5.42
10.22 0.92 -23.10 1.97 -0.60 0.26
8.70 0.95 -69.91 14.07 18.19 5.27 -0.64 0.27

XTO 155

14.49 1.29 -28.36 2.44
14.18 1.35 -46.27 26.57 6.72 9.89
14.54 1.29 -28.29 2.44 0.11 0.21
14.24 1.36 -45.27 26.57 6.37 9.89 0.10 0.21

Petro-Hunt 145

17.14 1.51 -31.09 2.73
16.50 1.52 -67.56 20.98 13.66 7.68
17.78 1.57 -33.56 2.97 -0.74 0.19
17.23 1.59 -64.22 21.95 11.51 8.07 -0.72 0.19

All 4,408

7.37 0.13 -17.72 0.30
7.20 0.13 -29.39 2.04 4.39 0.75
7.26 0.13 -17.82 0.30 -0.20 0.05
7.12 0.13 -28.54 2.05 4.04 0.76 -0.16 0.05

Maximum likelihood estimates of the uncertainty preference model:

uij = ⇠m (�PiE [DOPij | �]� ci(Sj ,Wj)) +
⇣
⇠s,0 + ⇠s,1

p
log | I |

⌘
�Pi (V [DOPij | �])

1
2 + ✏ij

Pi is the price of oil for well i, E [DOPij ] is the expectation of the present discounted value of oil production
for well i when it is fracked using design j, V [DOPij ] is the variance of the present discounted value of
oil production for i under design j, ci(Sj ,Wj) is the cost of implementing design j on well i, | I | is the
number of wells in the information set, � is the increase (or decrease) in log �✏ for wells in I operated by
the same firm, and ✏ij is an iid logit shock.

47



A Likelihood Calculation

A.1 Step 1

Let ✓ = (↵, �, �, ⌘) represent the vector of the non-fracking parameters and let � = (�
✏

, �
⌫

) rep-

resent the vector of the variance parameters. I compute the pseudo-observation g
i

from (Y
it

, X
it

),

conditional on ✓ as

g
i

=
1

N
i

NiX

t=1

(log Y
it

�X
it

✓)

=
1
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i

NiX
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(g(Z
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+ ⌫
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)

= f(Z
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+
1

N
i

NiX

t=1

⌫
it

g
i

is the sum of the “true” e↵ect of fracking and location on oil production and a normally dis-

tributed error with zero mean and variance �2

✏

+ 1

Ni
�2

⌫

.

A.2 Step 2

Conditional on the pseudo-observations g
i

, the likelihood of (Y
it

, X
it

) follows the standard formula

for panel data with a random e↵ect on each well. Let  (· | µ, �) denote the normal likelihood

with mean µ and standard deviation � and let e
it

= log Y
it

� X
it

✓. Finally, let bolded capital

letters represent vectors of the time series of a variable. The log-likelihood of observing (Y
i

,X
i

)

conditional on the parameters (✓,�) and the unobserved impact of fracking g
i

is
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The first term does not depend on g
i

and the second term is simply a normal log-likelihood,

evaluated at g
i

, the e↵ect of fracking and location for well i. Though g
i

is unobserved, by the

properties of GPR, the vector g of g
i

’s for all N wells is distributed multivariate normal with mean

zero and variance K(Z | �). Thus, I can integrate over the values of g
i

to obtain the likelihood in

terms of observable data and parameters. Let T denote the vector of values of T
i

, ⌃(T,�) be an N

by N matrix with �2

✏

+ 1

Ti
�2

⌫

in the i-th diagonal position and zeros elsewhere and let µ(Y,X,T, ✓)

be a vector with 1

Ti

P
Ti

t=1

e
it

in the i-th position. Then the full log-likelihood is:

logL(Y,X,Z) = log

Z
 (g | 0, K(Z | �))

NY

i=1

L(Y
i

,X
i

| g
i

, ✓,�)dgi

=
NX

i=1

log J(Y
i

,X
i

, T
i

| ✓,�) + log

Z
 (g | 0, K(Z | �)) (g | µ(Y,X,T, ✓),⌃(T,�))dg

=
NX

i=1

log J(Y
i

,X
i

, T
i

| ✓,�) + log (µ(Y,X,T, ✓) | 0,⌃(T,�) +K(Z | �))

where the last line comes as a result of equations A.7 and A.8 from Rasmussen and Williams

(2005). Having integrated out the unobserved values g
i

, the full log-likelihood is completely in

terms of the observed data (Y,X,T), the parameter vectors ✓ and �, and the covariance matrix

K(Z | �) of the nonparametric e↵ect of fracking and location on oil production.

B Expected Present Discounted Value of Oil Production

Discounted oil production is the product of two random variables:

DOP
ij

= exp (↵ + ⌘ logH
i

+ f (S
j

,W
j

, lat
i

, lon
i

) + ✏
i

)| {z }
Baseline Production

⇥
240X

t=1

⇢tM
it

exp (� log t+ �D
it

+ ⌫
it

)

| {z }
Decline, Maintenance and Discounting

Because ✏ and the ⌫’s are all normal and jointly independent, it is easy to compute the moments

of DOP
ij

. The mean and variance of baseline production are given by the standard formula for

normal random variables:

µ
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where ĝ (S
j

,W
j

, lat
i

, lon
i

) is the posterior mean value of the Gaussian Process for the e↵ect of

fracking inputs and location on baseline oil production and �2

g,ij

is its posterior variance. The
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mean and variance of the e↵ects of decline, maintenance and discounting are:

µ
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under the assumption that the M
it

’s and ⌫
it

’s are jointly independent. Finally, the mean and

variance of discounted oil production are:

E [DOP
ij

] = µ
BP

µ
DMD

V [DOP
ij

] = µ2

BP

�2

DMD

+ �2

BP

µ2

DMD

+ �2

BP

�2

DMD

I compute E [DOP
ij

] and V [DOP
ij

] for a 10 by 10 grid of possible input choices j for all wells

i. For both inputs, the grid is evenly spaced between the minimum and maximum values attained

in the sample.
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